Fully 3-D multiple beam dynamics processes simulation of the Fermilab Tevatron: A SciDAC Breakthrough E. Stern, J. Amundson, P. Spentzouris and A. Valishev Fermi National Accelerator Laboratory # The Big Questions: time, space, matter and energy Cosmology and Astrophysics Observing the stars High Energy Particle Physics Running experiments at accelerators # Finding new phenomena #### The Fermilab Tevatron Colliding protons and antiprotons at 1 TeV, the highest energy accelerator in the world up until March 2010! # Recent results from the Tevatron program Fermilab-Pub-10/114-E #### Evidence for an anomalous like-sign dimuon charge asymmetry V.M. Abazov, ³⁶ B. Abbott, ⁷⁴ M. Abolins, ⁶³ B.S. Acharya, ²⁹ M. Adams, ⁴⁹ T. Adams, ⁴⁷ E. Aguilo, ⁶ G.D. Alexeev, ³⁶ G. Alkhazov, ⁴⁰ A. Alton^a, ⁶² G. Alverson, ⁶¹ G.A. Alves, ² L.S. Ancu, ³⁵ M. Aoki, ⁴⁸ Y. Arnoud, ¹⁴ M. Arov, ⁵⁸ A. Askew, ⁴⁷ B. Åsman, ⁴¹ O. Atramentov, ⁶⁶ C. Avila, ⁸ J. BackusMayes, ⁸¹ F. Badaud, ¹³ L. Bagby, ⁴⁸ B. Baldin, ⁴⁸ D. #### Phys. Rev. Lett. 104, 2010 #### Combination of Tevatron searches for the standard model Higgs boson in the W^+W^- decay mode T. Aaltonen[†], ¹⁵ V.M. Abazov[‡], ⁵³ B. Abbott[‡], ¹²¹ M. Abolins[‡], ¹⁰⁶ B.S. Acharya[‡], ³⁵ M. Adams[‡], ⁸⁴ T. Adams[‡], ⁸⁰ J. Adelman[†], ⁸³ E. Aguilo[‡], ⁷ G.D. Alexeev[‡], ⁵³ G. Alkhazov[‡], ⁵⁷ A. Alton^{***}, ¹⁰⁴ B. Álvarez González^{*†}, ⁶¹ G. Alverson[‡], ⁹⁹ G.A. Alves[‡], ² S. Amerio^{**}, ^{10‡}, ³⁹ D. Amidei[‡], ¹⁰⁴ A. Anastassov[‡], ⁸⁶ L.S. Ancu[‡], ⁵² A. Annovi[‡], ³⁸ J. Antos[‡], ⁵⁸ M. Aoki[‡], ⁸² G. Apollinari[‡], ⁸² J. Appel[‡], ⁸² A. Apresyan[‡], ⁹¹ T. Arisawa[‡], ⁴⁶ Y. Arnoud[‡], ¹⁷ M. Arov[‡], ⁹⁵ A. Artikov[‡], ⁵³ J. Asaadi[‡], ¹²⁸ W. Ashmanskas[‡], ⁸² A. Askew[‡], ⁸⁰ B. Åsman[‡], ⁶² O. Atramentov[‡], ¹⁰⁹ A. Attal[‡], ⁵⁹ A. Aurisano[‡], ¹²⁸ C. Avila[‡], ¹⁰ F. Azfar[‡], ⁷⁰ J. BackusMayes[‡], ¹³³ F. Badaud[‡], ¹⁶ W. Badgett[†], ⁸² L. Bagby[‡], ⁸² B. Baldin[‡], ⁸² D.V. Bandurin[‡], ⁹⁴ S. Banerjee[‡], ³⁵ A. Barbaro-Galtieri[‡], ⁷² E. Barberis[‡], ⁹⁹ A.-F. Barfuss[‡], ¹⁸ P. Baringer[‡], ⁹³ V.E. Barnes[‡], ⁹¹ B.A. Barnett[‡], ⁹⁶ J. Barreto[‡], ² P. Barria^{*}, ⁴⁰ J.F. Bartlett[‡], ⁸² P. Bartos[‡], ⁵⁸ U. Bassler[‡], ²¹ D. Bauer[‡], ⁶⁷ G. Bauer[‡], ¹⁰¹ S. Beale[‡], ⁷ A. Bean[‡], ⁹³ P.-H. Beauchemin[†], ⁶ F. Bedeschi[†], ⁴⁰ D. Beecher[†], ⁶⁸ M. Begalli[‡], ³ M. Begel[‡], ¹¹⁷ S. Behari[†], ⁹⁶ C. Belanger-Champagne[‡], ⁶² L. Bellantoni[‡], ⁸² G. Bellettini^{*}, ⁹⁹ J. Bellinger[‡], ¹³⁴ J.A. Benitez[‡], ¹⁰⁶ D. Beniamin[†], ¹¹⁸ A. Beretvas[‡], ⁸² S.B. Beri[‡], ³³ G. Bernardi[‡], ²⁰ # High intensity beams in the Tevatron #### Destabilizing effects - Beam-Beam interactions - Bunch-bunch coupling - >Head-tail coupling - Machine impedance - Longitudinal-transversecoupling - Chromaticity - >excites instabilities Numeric simulation is the only way to study the problem without disrupting operations #### BeamBeam3d code Parallel 3-D Poisson beambeam force calculation* Features developed for Tevatron simulation Coupled XY maps Independent multi-bunch tracking Helical trajectory Full collision pattern Resistive wall impedance Chromaticity Validate each beam dynamics process individually, either with measured data or with analytic calculations. ^{*} J. Qiang, et al, J. Comp. Phys. 198 (2004) #### Beam-beam validation # VEPP-2M 500 MeV e⁺e⁻ collider synchro-betatron mode evolution measurement *I.N.~Nesterenko, et al.Phys.Rev.E, 65, 056502 (2002) ### Impedance model $$W = \left| \frac{2}{\pi b^3} \right| \sqrt{\frac{4\pi \epsilon_0 c}{\sigma}} \frac{L}{\sqrt{\Delta z}} \qquad \Delta y_2' = \frac{N_i r_p}{\beta \gamma} W y_1$$ kick $$\Delta y_2' = \frac{N_i r_p}{\beta \gamma} W y_1$$ # Impedance validation (1): tune splitting evolution #### Well understood variation of tune split with beam intensity Sidebands meet at expected location # Impedance validation (2): instability growth rates head-tail phase instability growth rate $$\chi = \frac{\xi \, \omega_{\beta} \, \hat{z}}{c \, \eta} \qquad \tau^{-1} = \frac{N \, r_{o} \, W_{o}}{2 \, \pi \, \beta \, \gamma \, v_{\beta}} \chi$$ $$\frac{1}{2 \, 10^{12}} \, \frac{1}{3 \, 10^{12}} \, \frac{1}{4 10^{1$$ impedance model validated ## Bunch dependent emittance growth Pattern reproduced by the simulation ## Tevatron setup dance The Tevatron is unstable at high intensities Adding chromaticity can improve stability Chromaticity causes losses and radiation Beam-beam force is stabilizing During setup, beam-beam force is reduced But is it enough to give beam stability? ### Computation - •Jobs run on ~1000 cores on BG/P - •Full 3D interactions very slowly - •Simplified problem runs ~1500 turn/hour - Real accelerator: 48K turns/second - •~250 jobs for this investigation (production&validation) - •5 million core hours on Intrepid BG/P ## Weak beam-beam stability studies #### No beam-beam #### Weak beam-beam ## Lowered chromaticity works! A. Valishev PAC2009, Recent Tevatron Operational Experience # Normalized Proton Loss During Low-Beta Squeeze Red traces - before chromaticity change at sequence 14, blue - after # Contributes to data collection improvement #### Collider Run II Integrated Luminosity ## Summary - •We have developed an comprehensive multiple physics process application with the relevant effects to simulate the Tevatron. - •Each physics process model has been independently validated. - •We have used the application to simulate a real world operational issue and support a parameter change resulting in a real improvement in luminosity and reliability and safety. #### Acknowledgements **Argonne Leadership Computing Facility** National Energy Research Scientific Computing Center